SDEs driven by multiplicative stable-like Lévy processes

Zhen-Qing Chen

University of Washington

16th Workshop on Markov Processes and Related Fields

July 12-16, 2021, Changsha, China

Collaborators

- Xicheng Zhang (Wuhan U.)
- Guohuan Zhao (Bielefeld U./CAS, Beijing)

Z.-Q. Chen, Xicheng Zhang and Guohuan Zhao

Supercritical SDEs driven by multiplicative stable-like Lévy processes

Trans. Amer. Math. Soc. (to appear), 35 pp.

SDE driven by Lévy processes

This talk is concerned with strong and weak well posedness of solutions to

$$\mathrm{d}X_t = \sigma(t, X_{t-})\mathrm{d}Z_t + b(t, X_t)\mathrm{d}t, \quad X_0 = x \in \mathbb{R}^d,$$

where Z is a d-dimensional non-degenerate α -stable-like process with $\alpha \in (0,2)$, beyond Lipschitz condition on b.

SDE driven by Brownian motion

$$\mathrm{d}X_t = \sigma(X_t)\mathrm{d}B_t + b(X_t)\mathrm{d}t, \quad X_0 = x \in \mathbb{R}^d,$$

Infinitesimal generator:

$$\mathcal{L} = \frac{1}{2} \sum_{i,j=1}^{d} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} + b(x) \cdot \nabla.$$

- d=1 and b=0: (Strong solution and PU) Yamada-Watanabe condition (1971). $\sigma(x) \in C^{1/2}(\mathbb{R})$. Counter-example: Barlow (1992) for $\sigma(x) \in C^{\beta}(\mathbb{R})$ with $\beta < 1/2$.
- 2 $d \ge 2$: (Strong solution and PU) Yamada-Watanabe (1971): b = 0. Slightly weaker than Lipschitz with a logarithmic term. $\sigma = I$: bounded b: Zvonkin (1974), Veretennikov (1979)
 - $\sigma = I_{d \times d}$: b(t, x) in L^p/L^q , Krylov and Röckner (2005).

SDE driven by Brownian motion

Weak existence and uniqueness:

Stroock-Varadhan (1969), Krylov (1969, 1973). $\sigma(x)$: continuous and uniformly elliptic.

Girsanov: removing and adding drifts.

Bass-C. (2003): $\sigma(x) = I_{d \times d}$, measure-valued drift $\vec{\mu}(x) \cdot \nabla$.

SDE driven by stable processes

$$\mathrm{d}X_t = \sigma(X_{t-})\mathrm{d}Z_t + b(X_t)dt, \quad X_0 = x \in \mathbb{R}^d,$$

where Z is an isotropic α -stable process with $\alpha \in (0,2)$. Infinitesimal generator when $\sigma = I_{d \times d}$:

$$\mathcal{L} = -(-\Delta)^{\alpha/2} + b \cdot \nabla.$$

Subcritical: $\alpha > 1$; critical: $\alpha = 1$; supercritical: $\alpha < 1$.

- of d=1 and $\sigma=1$ (Strong solution and PU) Tanaka-Tsuchiya-Watanabe (1974): $b\in L^{\infty}(\mathbb{R})$ when $\alpha\in(1,2); b\in C(\mathbb{R})$ when $\alpha=1$. Counter-example for $b\in C^{\beta}(\mathbb{R})$ with $\beta<1-\alpha$ when $\alpha\in(0,1)$.
- ② d=1 and b=0 (Strong solution and PU) Komatsu (1982), Bass (2003): $\sigma \in C^{1/\alpha}(\mathbb{R})$ for $\alpha>1$. Counter-example: Bass-Burdzy-C. (2004) for $\sigma \in C^{\beta}(\mathbb{R})$ with $\beta<1 \wedge (1/\alpha)$ for any $\alpha\in(0,2)$.

SDE driven by stable processes

- $d \ge 2$: $\sigma = I_{d \times d}$ (Strong solution and PU)
 - Priola (2012): Z non-degenerate symmetric α -stable with $\alpha \in [1,2)$, , $b(x) \in C^{\beta}(\mathbb{R}^d)$ with $\beta > 1 (\alpha/2)$. Open problem for supercritical case: $\alpha \in (0,1)$.
 - 2 X. Zhang (2013): $\alpha \in (1,2)$, b(t,x) in some fractional Sololev space.
 - C.-Song-Zhang (2018): Z a class of Lévy processes and subordinate BMs
 - When Z is an isotropic α -stable process on \mathbb{R}^d , for $b \in L^{\infty}([0, T], C^{\beta}(\mathbb{R}^d))$ with $\beta > 1 (\alpha/2)$ for $\alpha \in (0, 2)$.
 - When Z is a cylindrical α -stable process on \mathbb{R}^d , for $b \in L^{\infty}([0, T], C^{\beta}(\mathbb{R}^d))$ with $\beta > 1 (\alpha/2)$ for $\alpha > \frac{2}{3}$.

SDE driven by stable processes

Weak existence and weak uniqueness.

- **1** *Z*: isotropic α -stable processes with $\alpha \in (1,2)$, $\sigma = I_{d \times d}$:
 - Portenko (1994 for d=1), Podolynny-Portenko (1995 for $d \ge 2$): $b(x) \in L^p(\mathbb{R}^d)$ with $p > d/(\alpha 1)$.
 - C.-L. Wang (2016): b(x) in Kato class, including $L^{\infty}(\mathbb{R}^d) + L^p(\mathbb{R}^d)$ with $p > d/(\alpha 1)$.
- **2** *Z*: isotropic α -stable processes with $\alpha \in (0, 1)$, $\sigma = I_{d \times d}$:
 - Tanaka-Tsuchiya-Watanabe (1974), Tsutsumi (1974): d = 1. Counter-example for $b \in C^{\beta}(\mathbb{R})$ with $\beta < 1 \alpha$;
 - Kulik (2019): $0 < c_1 \le \sigma(x) \le c_2$ scalar Hölder, $b(x) \in C^{\beta}(\mathbb{R}^d)$ with $\beta > (1 \alpha)^+$.
- 3 Zhao (2019): a subclass of α -stable processes Z with $\alpha \in (0, 1), \ \sigma = I_{d \times d}, \ b(x) \in C^{\beta}(\mathbb{R}^d)$ with $\beta > 1 \alpha$.

Our setting

Z: Lévy process with $\mathbb{E}\left[e^{i\xi\cdot(Z_t-Z_0)}\right]=e^{-t\psi(\xi)}$:

$$\psi(\xi) = \int_{\mathbb{R}^d} \left(1 - e^{i\xi \cdot z} + i\xi \cdot z \mathbb{1}_{\{|z| < 1\}}\right) \nu(dz).$$

Lévy measure ν : $\int_{\mathbb{R}^d} (1 \wedge |z|^2) \nu(dz) < \infty$.

For $\alpha \in (0,2)$, let $\mathbb{L}_{non}^{(\alpha)}$ be the space of all non-degenerate α -stable Lévy measures $\nu^{(\alpha)}$:

$$\nu^{(\alpha)}(A) = \int_0^\infty \left(\int_{\mathbb{S}^{d-1}} \mathbb{1}_A(r\theta) \Sigma(\mathrm{d}\theta) \right) \frac{\mathrm{d}r}{r^{1+\alpha}}, \quad A \in \mathcal{B}(\mathbb{R}^d),$$

where Σ is a finite measure on \mathbb{S}^{d-1} with

$$\int_{\mathbb{S}^{d-1}} |\theta_0 \cdot \theta| \, \Sigma(\mathrm{d}\theta) > 0 \quad \text{for every } \theta_0 \in \mathbb{S}^{d-1}.$$

Stable-like Lévy process

Let Z be a purely discontinuous Lévy process with Lévy measure ν so that

$$\nu_1(A) \leq \nu(A) \leq \nu_2(A), \quad A \in \mathcal{B}(B(0,1)).$$

for some $\nu_1, \nu_2 \in \mathbb{L}_{non}^{(\alpha)}$.

Example: Z is the independent sum of α -stable and β -stable processes with $\beta < \alpha$.

Assume

$$\Lambda^{-1}|\xi| \le |\sigma(t,x)\xi| \le \Lambda|\xi|$$
 and $|b(t,x)| \le \Lambda$.

Stable-like Lévy process

Let Z be a purely discontinuous Lévy process with Lévy measure ν so that

$$\nu_1(A) \leq \nu(A) \leq \nu_2(A), \quad A \in \mathcal{B}(B(0,1)).$$

for some $\nu_1, \nu_2 \in \mathbb{L}_{non}^{(\alpha)}$.

Example: Z is the independent sum of α -stable and β -stable processes with $\beta < \alpha$.

Assume

$$\Lambda^{-1}|\xi| \le |\sigma(t,x)\xi| \le \Lambda|\xi|$$
 and $|b(t,x)| \le \Lambda$.

Our main results

Theorem (C.-Zhang-Zhao, 2021+)

Under the above assumptions, for each $x \in \mathbb{R}^d$, the SDE

$$dX_t = \sigma(t, X_{t-})dZ_t + b(t, X_t)dt, \quad X_0 = x_0.$$

- has a unique weak solution if $\sigma(t,x)$ and b(t,x) are C^{β} in x with $\beta > (1-\alpha)^+$;
- **2** has a unique strong solution if $\sigma(t,x)$ is Lipschitz in x and b(t,x) are C^{β} in x with $\beta > 1 (\alpha/2)$.
- Hold for any α -stable process including cylindrical ones.
- Multiplicative noise; Localization
- Sharp in σ (strong solution); sharp in b (weak solution).

Our main results

Theorem (C.-Zhang-Zhao, 2021+)

Under the above assumptions, for each $x \in \mathbb{R}^d$, the SDE

$$dX_t = \sigma(t, X_{t-})dZ_t + b(t, X_t)dt, \quad X_0 = x_0.$$

- has a unique weak solution if $\sigma(t,x)$ and b(t,x) are C^{β} in x with $\beta > (1-\alpha)^+$;
- **2** has a unique strong solution if $\sigma(t,x)$ is Lipschitz in x and b(t,x) are C^{β} in x with $\beta > 1 (\alpha/2)$.
- ullet Hold for any lpha-stable process including cylindrical ones.
- Multiplicative noise; Localization
- Sharp in σ (strong solution); sharp in b (weak solution).

Our approach

The infinitesimal generator for SDE is $\mathcal{L}_t + b(t, x) \cdot \nabla$, where

$$\mathcal{L}_t u(x) := \int_{\mathbb{R}^d} \left(u(x + \sigma(t, x)z) - u(x) - \mathbb{1}_{\{|z| \leq 1\}} \sigma(t, x)z \cdot \nabla u(x) \right) \nu(\mathrm{d}z).$$

For strong well posedness, we use Zvonkin's change of variable to remove the drift. Key: existence, uniqueness and regularity estimates for

$$\partial_t u = (\mathcal{L}_t - \lambda)u + b \cdot \nabla u + f$$
 with $u(0, x) = 0$.

We show when $\alpha + \beta > 1$ and $\sigma(t, x) = \sigma(t)$, for every $\rho > d/(\alpha + \beta - 1)$,

$$||u||_{L^{\infty}([0,T];B^{\alpha+\beta}_{p,\infty})} \leq C||f||_{L^{\infty}([0,T];B^{\beta}_{p,\infty})},$$

and for any $\gamma \in (0, \alpha + \beta)$,

$$||u||_{L^{\infty}([0,T];\mathcal{B}_{p,\infty}^{\gamma})} \leq c_{\lambda}||f||_{L^{\infty}([0,T];\mathcal{B}_{p,\infty}^{\beta})},$$

where $B_{p,\infty}^{\beta}$ is the usual Besov space and $c_{\lambda} \to 0$ as $\lambda \to \infty$.

Our approach for strong well posedness

For general Hölder $\sigma(t,x)$, we use a localization and a patching-together procedure to establish the above a priori estimate for Lévy measure ν with bounded support.

Take f=b and $\lambda>0$ large. By Sobolev embedding, $\|\nabla u\|_{\infty}<1/2$. So $\Phi(t,x):=x+u(t,x)$ is 1-1. When $\sigma(t,x)$ is Lipschitz in x, $\beta>1-(\alpha/2)$ and ν has bounded support, by Ito's formula, $Y_t:=\Phi(t,X_t)$ satisfies an SDE with Lipschitz coefficients. Thus Y_t is well-posed and so is X_t .

General ν : truncation and piecing-together argument.

New feature: we use the Littlewood-Paley theory and some Bernstein's type inequalities to establish the above a priori estimates for the fractional PDE. This approach allows us to address the open problem affirmatively for any non-degenerate stable processes.

Our approach for strong well posedness

For general Hölder $\sigma(t,x)$, we use a localization and a patching-together procedure to establish the above a priori estimate for Lévy measure ν with bounded support.

Take f=b and $\lambda>0$ large. By Sobolev embedding, $\|\nabla u\|_{\infty}<1/2$. So $\Phi(t,x):=x+u(t,x)$ is 1-1. When $\sigma(t,x)$ is Lipschitz in x, $\beta>1-(\alpha/2)$ and ν has bounded support, by Ito's formula, $Y_t:=\Phi(t,X_t)$ satisfies an SDE with Lipschitz coefficients. Thus Y_t is well-posed and so is X_t .

General ν : truncation and piecing-together argument.

New feature: we use the Littlewood-Paley theory and some Bernstein's type inequalities to establish the above a priori estimates for the fractional PDE. This approach allows us to address the open problem affirmatively for any non-degenerate stable processes.

Our approach for strong well posedness

For general Hölder $\sigma(t,x)$, we use a localization and a patching-together procedure to establish the above a priori estimate for Lévy measure ν with bounded support.

Take f=b and $\lambda>0$ large. By Sobolev embedding, $\|\nabla u\|_{\infty}<1/2$. So $\Phi(t,x):=x+u(t,x)$ is 1-1. When $\sigma(t,x)$ is Lipschitz in x, $\beta>1-(\alpha/2)$ and ν has bounded support, by Ito's formula, $Y_t:=\Phi(t,X_t)$ satisfies an SDE with Lipschitz coefficients. Thus Y_t is well-posed and so is X_t .

General ν : truncation and piecing-together argument.

New feature: we use the Littlewood-Paley theory and some Bernstein's type inequalities to establish the above a priori estimates for the fractional PDE. This approach allows us to address the open problem affirmatively for any non-degenerate stable processes.

Littlewood-Paley theory

- (i) a substitute for orthogonality arguments in L^2 spaces.
- (ii) decompose f into a sum of functions $\Pi_j f$ with localized frequencies (between 2^{j-1} and $3 \cdot 2^{j-1}$), and use it to characterize the Besov spaces.
- (iii) Bernstein's type inequality: estimates on $\|\nabla^k \Pi_j f\|_q$ and $\|(-\Delta)^{\beta/2} \Pi_j f\|_p$.
- (iv) Commutator estimates on $\|[\Pi_i, f]g\|_p$.
- (iv) Sobolev embedding theorem for Besov spaces.

Weak well posedness

- (i) Uniqueness for the martingale problem for SDE driven by truncated Lévy process, using solution of fractional PDE.
- (ii) Weak existence follows from a weak convergence argument.
- (iii) Weak uniqueness for general ν : resurrect at times $\{\tau_k; k \geq 1\}$ when the driving Lévy process Z makes jumps larger than 1 and show the resulting solution satisfies SDE driven by the truncated Lévy process. This gives weak uniqueness on $[0, \tau_1)$, and then on $[0, \tau_2)$, ...

Thanks for watching!