SDEs driven by multiplicative stable-like Lévy processes

Zhen-Qing Chen

University of Washington

16th Workshop on Markov Processes and Related Fields

July 12-16, 2021, Changsha, China

Zhen-Qing Chen [SDEs driven by multiplicative stable-like Lévy processes](#page-19-0)

 $($ \Box \rightarrow $($ \Box \rightarrow

 $\mathcal{A} \oplus \mathcal{A} \rightarrow \mathcal{A} \oplus \mathcal{A}$

- Xicheng Zhang (Wuhan U.)
- Guohuan Zhao (Bielefeld U./CAS, Beijing)

Z.-Q. Chen, Xicheng Zhang and Guohuan Zhao Supercritical SDEs driven by multiplicative stable-like Lévy processes *Trans. Amer. Math. Soc.* (to appear), 35 pp.

④ → ④ → ④ ⇒ → → →

 $2Q$

E.

This talk is concerned with strong and weak well posedness of solutions to

$$
dX_t = \sigma(t, X_{t-})dZ_t + b(t, X_t)dt, \quad X_0 = x \in \mathbb{R}^d,
$$

where *Z* is a *d*-dimensional non-degenerate α-stable-like process with $\alpha \in (0, 2)$, beyond Lipschitz condition on *b*.

 \leftarrow \Box

 $2Q$

E.

SDE driven by Brownian motion

$$
dX_t = \sigma(X_t)dB_t + b(X_t)dt, \quad X_0 = x \in \mathbb{R}^d,
$$

Infinitesimal generator:

$$
\mathcal{L}=\frac{1}{2}\sum_{i,j=1}^d a_{ij}(x)\frac{\partial^2}{\partial x_i\partial x_j}+b(x)\cdot\nabla.
$$

 \bullet $d = 1$ and $b = 0$: (Strong solution and PU) Yamada-Watanabe condition (1971). $\sigma(x) \in C^{1/2}(\mathbb{R})$. Counter-example: Barlow (1992) for $\sigma(x) \in C^{\beta}(\mathbb{R})$ with β < 1/2.

 \bullet $d > 2$: (Strong solution and PU) Yamada-Watanabe (1971): $b = 0$. Slightly weaker than Lipschitz with a logarithmic term.

σ = *I*: bounded *b*: Zvonkin (1974), Veretennikov (1979)

$$
\sigma = I_{d \times d} \colon b(t, x)
$$
 in L^p/L^q , Krylov and Röckner (2005).

つへへ

• Weak existence and uniqueness:

Stroock-Varadhan (1969), Krylov (1969, 1973). $\sigma(x)$: continuous and uniformly elliptic.

Girsanov: removing and adding drifts.

Bass-C. (2003): $\sigma(x) = I_{d \times d}$, measure-valued drift $\vec{\mu}(x) \cdot \nabla$.

≮ロ ▶ ⊀ 御 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

 $2Q$ B.

$$
dX_t = \sigma(X_{t-})dZ_t + b(X_t)dt, \quad X_0 = x \in \mathbb{R}^d,
$$

where *Z* is an isotropic α -stable process with $\alpha \in (0, 2)$. Infinitesimal generator when $\sigma = I_{d \times d}$:

$$
\mathcal{L} = -(-\Delta)^{\alpha/2} + b \cdot \nabla.
$$

Subcritical: $\alpha > 1$; critical: $\alpha = 1$; supercritical: $\alpha < 1$.

- \bullet *d* = 1 and σ = 1 (Strong solution and PU) Tanaka-Tsuchiya-Watanabe (1974): *b* ∈ *L*∞(R) when $\alpha \in (1, 2)$; $b \in C(\mathbb{R})$ when $\alpha = 1$. Counter-example for $b\in C^\beta(\mathbb{R})$ with $\beta < 1-\alpha$ when $\alpha \in (0,1).$
- 2 $d = 1$ and $b = 0$ (Strong solution and PU) Komatsu (1982), Bass (2003): $\sigma \in C^{1/\alpha}(\mathbb{R})$ for $\alpha > 1.$ Counter-example: Bass-Burdzy-C. (2004) for $\sigma \in C^{\beta}(\mathbb{R})$ with $\beta < 1 \wedge (1/\alpha)$ for any $\alpha \in (0,2)$. (□) (/ [□]

つひへ

 $d \geq 2$: $\sigma = I_{d \times d}$ (Strong solution and PU)

- **1** Priola (2012): *Z* non-degenerate symmetric α -stable with $\alpha \in [1,2)$, , $b(x) \in C^{\beta}(\mathbb{R}^d)$ with $\beta > 1 - (\alpha/2)$. Open problem for supercritical case: $\alpha \in (0,1)$.
- 2 X. Zhang (2013): $\alpha \in (1, 2)$, $b(t, x)$ in some fractional Sololev space.
- ³ C.-Song-Zhang (2018): *Z* a class of Lévy processes and subordinate BMs
	- \bullet When *Z* is an isotropic α -stable process on \mathbb{R}^d , for *b* ∈ *L*[∞]([0, *T*], *C*^β(\mathbb{R}^{d})) with $\beta > 1 - (\alpha/2)$ for $\alpha \in (0, 2)$.
	- \bullet When *Z* is a cylindrical α -stable process on \mathbb{R}^d , for *b* ∈ *L*[∞]([0, *T*], *C*^β(\mathbb{R}^{d})) with $\beta > 1 - (\alpha/2)$ for $\alpha > 2/3$.

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

∍

SDE driven by stable processes

Weak existence and weak uniqueness.

- \bullet *Z*: isotropic α-stable processes with $\alpha \in (1, 2)$, $\sigma = I_{d \times d}$:
	- Portenko (1994 for $d = 1$), Podolynny-Portenko (1995 for $d \ge 2$: $b(x) \in L^p(\mathbb{R}^d)$ with $p > d/(\alpha - 1)$.
	- C.-L. Wang (2016): *b*(*x*) in Kato class, including $L^{\infty}(\mathbb{R}^d) + L^p(\mathbb{R}^d)$ with $p > d/(\alpha - 1)$.
- 2 *Z*: isotropic α -stable processes with $\alpha \in (0,1)$, $\sigma = I_{d \times d}$: • Tanaka-Tsuchiya-Watanabe (1974), Tsutsumi (1974): *d* = 1. Counter-example for $b \in C^{\beta}(\mathbb{R})$ with $\beta < 1 - \alpha$; • Kulik (2019): $0 < c_1 \leq \sigma(x) \leq c_2$ scalar Hölder, $b(x) \in C^{\beta}(\mathbb{R}^d)$ with $\beta > (1 - \alpha)^+$.
- ³ Zhao (2019): a subclass of α-stable processes *Z* with $\alpha \in (0, 1), \sigma = I_{d \times d}, b(x) \in C^{\beta}(\mathbb{R}^d)$ with $\beta > 1 - \alpha$.

イロメ イ押 メイヨメ イヨメ

÷.

Our setting

 Z : Lévy process with $\mathbb{E}\left[e^{i\xi\cdot(Z_t-Z_0)}\right]=e^{-t\psi(\xi)}$:

$$
\psi(\xi)=\int_{\mathbb{R}^d}\left(1-e^{i\xi\cdot z}+i\xi\cdot z\mathbb{1}_{\{|z|<1\}}\right)\nu(dz).
$$

Lévy measure $\nu\colon \int_{\mathbb{R}^d} (1\wedge |z|^2) \nu(dz)<\infty.$

For $\alpha \in (0,2)$, let $\mathbb{L}_{non}^{(\alpha)}$ be the space of all non-degenerate α -stable Lévy measures $\nu^{(\alpha)}$:

$$
\nu^{(\alpha)}(\mathcal{A})=\int_0^\infty \left(\int_{\mathbb{S}^{d-1}}1\!\!1_{\mathcal{A}}(r\theta)\Sigma(\mathrm{d}\theta)\right)\frac{\mathrm{d}r}{r^{1+\alpha}},\quad \mathcal{A}\in\mathcal{B}(\mathbb{R}^d),
$$

where Σ is a finite measure on S *^d*−¹ with

$$
\int_{\mathbb{S}^{d-1}} |\theta_0 \cdot \theta| \, \Sigma(\mathrm{d} \theta) > 0 \quad \text{for every } \theta_0 \in \mathbb{S}^{d-1}.
$$

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト

 $2Q$ 項目

Let *Z* be a purely discontinuous Lévy process with Lévy measure ν so that

 $\nu_1(A) \leq \nu(A) \leq \nu_2(A), \quad A \in \mathcal{B}(B(0,1)).$

for some $\nu_1, \nu_2 \in \mathbb{L}_{non}^{(\alpha)}$.

Example: *Z* is the independent sum of α -stable and β -stable processes with $\beta < \alpha$.

Assume

 $|\Lambda^{-1}|\xi| \le |\sigma(t,x)\xi| \le \Lambda |\xi|$ and $|b(t,x)| \le \Lambda$.

KOD KAP KED KED E YA G

Let *Z* be a purely discontinuous Lévy process with Lévy measure ν so that

$$
\nu_1(A) \leq \nu(A) \leq \nu_2(A), \quad A \in \mathcal{B}(B(0,1)).
$$

for some $\nu_1, \nu_2 \in \mathbb{L}_{non}^{(\alpha)}$.

Example: *Z* is the independent sum of α -stable and β -stable processes with $\beta < \alpha$.

Assume

 $|\Lambda^{-1}|\xi| \le |\sigma(t,x)\xi| \le \Lambda |\xi|$ and $|b(t,x)| \le \Lambda$.

KED KAPD KED KED E YORG

Theorem (C.-Zhang-Zhao, 2021+)

Under the above assumptions, for each $x \in \mathbb{R}^d$, the SDE

$$
dX_t = \sigma(t, X_{t-})dZ_t + b(t, X_t)dt, \quad X_0 = x_0.
$$

1 has a unique weak solution if $\sigma(t,x)$ and $b(t,x)$ are C^β in x *with* β > $(1 - \alpha)^+$;

2 has a unique strong solution if $\sigma(t, x)$ is Lipschitz in x and *b*(*t*, *x*) are C^{β} *in x with* $\beta > 1 - (\alpha/2)$ *.*

• Hold for any α -stable process including cylindrical ones.

• Multiplicative noise; Localization

• Sharp in σ (strong solution); sharp in *b* (weak solution).

K ロ ト K 何 ト K ヨ ト K ヨ ト

つへへ

Theorem (C.-Zhang-Zhao, 2021+)

Under the above assumptions, for each $x \in \mathbb{R}^d$, the SDE

$$
dX_t = \sigma(t, X_{t-})dZ_t + b(t, X_t)dt, \quad X_0 = x_0.
$$

- **1** has a unique weak solution if $\sigma(t,x)$ and $b(t,x)$ are C^β in x *with* β > $(1 - \alpha)^+$;
- ² *has a unique strong solution if* σ(*t*, *x*) *is Lipschitz in x and b*(*t*, *x*) are C^{β} *in x with* $\beta > 1 - (\alpha/2)$ *.*
- Hold for any α -stable process including cylindrical ones.
- Multiplicative noise; Localization
- Sharp in σ (strong solution); sharp in *b* (weak solution).

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

つへへ

Our approach

The infinitesimal generator for SDE is $\mathcal{L}_t + b(t, x) \cdot \nabla$, where

$$
\mathcal{L}_t u(x) := \int_{\mathbb{R}^d} \left(u(x + \sigma(t,x)z) - u(x) - \mathbb{1}_{\{|z| \leq 1\}} \sigma(t,x)z \cdot \nabla u(x) \right) \nu(\mathrm{d}z).
$$

For strong well posedness, we use Zvonkin's change of variable to remove the drift. Key: existence, uniqueness and regularity estimates for

$$
\partial_t u = (\mathcal{L}_t - \lambda)u + b \cdot \nabla u + f \quad \text{with } u(0, x) = 0.
$$

We show when $\alpha + \beta > 1$ and $\sigma(t, x) = \sigma(t)$, for every $p > d/(\alpha + \beta - 1)$,

$$
||u||_{L^{\infty}([0,T];B^{\alpha+\beta}_{p,\infty})}\leq C||f||_{L^{\infty}([0,T];B^{\beta}_{p,\infty})},
$$

and for any $\gamma \in (0, \alpha + \beta)$,

$$
||u||_{L^{\infty}([0,T];\mathcal{B}_{p,\infty}^{\gamma})}\leq c_{\lambda}||f||_{L^{\infty}([0,T];\mathcal{B}_{p,\infty}^{\beta})},
$$

 $\mathsf{where}~ \mathsf{B}_{\mathsf{p},\infty}^\beta$ $\mathsf{where}~ \mathsf{B}_{\mathsf{p},\infty}^\beta$ $\mathsf{where}~ \mathsf{B}_{\mathsf{p},\infty}^\beta$ $\mathsf{where}~ \mathsf{B}_{\mathsf{p},\infty}^\beta$ $\mathsf{where}~ \mathsf{B}_{\mathsf{p},\infty}^\beta$ is the usual Besov space and $c_{\lambda}\to 0$ as $\lambda\to\infty.$ $\lambda\to\infty.$

Our approach for strong well posedness

For general Hölder $\sigma(t, x)$, we use a localization and a patching-together procedure to establish the above a priori estimate for Lévy measure ν with bounded support.

Take $f = b$ and $\lambda > 0$ large. By Sobolev embedding, $\|\nabla u\|_{\infty}$ < 1/2. So $\Phi(t, x) := x + u(t, x)$ is 1-1. When $\sigma(t, x)$ is Lipschitz in *x*, $\beta > 1 - (\alpha/2)$ and ν has bounded support, by lto's formula, $Y_t := φ(t, X_t)$ satisfies an SDE with Lipschitz coefficients. Thus Y_t is well-posed and so is X_t .

General ν : truncation and piecing-together argument.

New feature: we use the Littlewood-Paley theory and some Bernstein's type inequalities to establish the above a priori estimates for the fractional PDE. This approach allows us to address the open problem affirmatively for any non-degenerate stable processes.

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

Our approach for strong well posedness

For general Hölder $\sigma(t, x)$, we use a localization and a patching-together procedure to establish the above a priori estimate for Lévy measure ν with bounded support.

Take $f = b$ and $\lambda > 0$ large. By Sobolev embedding, $\|\nabla u\|_{\infty}$ < 1/2. So $\Phi(t, x) := x + u(t, x)$ is 1-1. When $\sigma(t, x)$ is Lipschitz in *x*, $\beta > 1 - (\alpha/2)$ and ν has bounded support, by lto's formula, $Y_t := φ(t, X_t)$ satisfies an SDE with Lipschitz coefficients. Thus Y_t is well-posed and so is X_t .

General ν : truncation and piecing-together argument.

New feature: we use the Littlewood-Paley theory and some Bernstein's type inequalities to establish the above a priori estimates for the fractional PDE. This approach allows us to address the open problem affirmatively for any non-degenerate stable processes.

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

Our approach for strong well posedness

For general Hölder $\sigma(t, x)$, we use a localization and a patching-together procedure to establish the above a priori estimate for Lévy measure ν with bounded support.

Take $f = b$ and $\lambda > 0$ large. By Sobolev embedding, $\|\nabla u\|_{\infty}$ < 1/2. So $\Phi(t, x) := x + u(t, x)$ is 1-1. When $\sigma(t, x)$ is Lipschitz in *x*, $\beta > 1 - (\alpha/2)$ and ν has bounded support, by lto's formula, $Y_t := φ(t, X_t)$ satisfies an SDE with Lipschitz coefficients. Thus Y_t is well-posed and so is X_t .

General ν : truncation and piecing-together argument.

New feature: we use the Littlewood-Paley theory and some Bernstein's type inequalities to establish the above a priori estimates for the fractional PDE. This approach allows us to address the open problem affirmatively for any non-degenerate stable processes.

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

- (i) a substitute for orthogonality arguments in L^2 spaces.
- (ii) decompose *f* into a sum of functions Π*^j f* with localized frequencies (between 2*j*−¹ and 3 · 2 *j*−1), and use it to characterize the Besov spaces.
- (iii) Bernstein's type inequality: estimates on k∇*k*Π*^j f* k*^q* and $\|(-\Delta)^{\beta/2}\Pi_jf\|_p.$
- (iv) Commutator estimates on $\|\[\Pi_j, f\]\]g\|_p$.
- (iv) Sobolev embedding theorem for Besov spaces.

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

- (i) Uniqueness for the martingale problem for SDE driven by truncated Lévy process, using solution of fractional PDE.
- (ii) Weak existence follows from a weak convergence argument.
- (iii) Weak uniqueness for general ν : resurrect at times $\{\tau_k; k \geq 1\}$ when the driving Lévy process Z makes jumps larger than 1 and show the resulting solution satisfies SDE driven by the truncated Lévy process. This gives weak uniqueness on $[0, \tau_1)$, and then on $[0, \tau_2)$, ...

K ロ ト K 伊 ト K ヨ ト

Thanks for watching!

Zhen-Qing Chen [SDEs driven by multiplicative stable-like Lévy processes](#page-0-0)

K ロ ト K 伊 ト K ヨ ト K

B

 299

∍